Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36204116

RESUMEN

Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inhibition studies of the essential oils from Juniperus thurifera bark (EOEJT). Chemical characterization of EOEJT was done by gas chromatography (GC-MS). We have performed three antioxidant assays (Reducing power (FRAP), 2, 2-diphenylpicrylhydrazyl (DPPH), and total antioxidant capacity (TAC)) of the EOEJT. We next evaluated the antimicrobial activity against in silico study, which was carried out to help evaluate the inhibitory effect of EOEJT against NADPH oxidase. Results of the GC/MS analysis revealed seven major compounds in EOEJT wherein muurolol (36%) and elemol (26%) were the major components. Moreover, EOEJT possessed interesting antioxidant potential with an IC50 respectively of 21.25 ± 1.02 µg/mL, 481.02 ± 5.25 µg/mL, and 271 µg EAA/mg in DPPH, FRAP, and total antioxidant capacity systems. Molecular docking of EOEJT in NADPH oxidase active site showed inhibitory activity of α-cadinol and muurolol with a glide score of -6.041 and -5.956 Kcal/mol, respectively. As regards the antibacterial and antifungal capacities, EOEJT was active against all tested bacteria and all fungi, notably, against Escherichia coli K12 with an inhibition diameter of 21 mm and a MIC value of 0.67 mg/mL, as well as against Proteus mirabilis ATCC 29906 with an inhibition diameter of 18.33 ± 1.15 mm and a MIC value of 1.34 mg/mL. A more pronounced effect was recorded for the fungal pathogens Fusarium oxysporum MTCC 9913 with inhibition of 37.44 ± 0.28% and MIC value of 6.45 mg/mL, as well as against Candida albicans ATCC 10231 with an inhibition diameter of 20.33 ± 1.15 mm and a MIC value of 0.67 ± 0.00 mg/mL. Altogether, these results highlight the importance of EOEJT as a source of natural antibacterial and antioxidant drugs to fight clinically important pathogenic strains.

2.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164402

RESUMEN

This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 µg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 µg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.


Asunto(s)
Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Artemisia/química , Aceites Volátiles/química , Fitoquímicos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Microbiana , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-34539801

RESUMEN

BACKGROUND: Artemisia negrei L. (A. negrei) is a medicinal and aromatic plant belonging to the family Asteraceae that is more widespread in the folded Middle Atlas Mountains, Morocco. MATERIALS AND METHODS: This study was run to investigate the phytochemical composition and antioxidant, antibacterial, and antifungal activities of Artemisia negrei L. essential oil. This oil was extracted from the fresh plant material by using the Clevenger apparatus. The phytochemical composition was characterized by GC-MS. The antioxidant activity was evaluated using different methods including DPPH, ß-carotene bleaching, and total antioxidant capacity. The antibacterial activity was tested vs. multidrug-resistant bacteria including both Gram-negative and Gram-positive using inhibition zones in agar media and minimum inhibitory concentration (MIC) bioassays. The antifungal activity was conducted on Candida albicans, Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum using a solid medium assay. RESULTS: The chromatographic characterization of essential oils of A. negrei revealed the presence of 34 compounds constituting 99.91% of the total essential oil. The latter was found to have promising antioxidant activity by all bioassays used such as DPPH, ß-carotene bleaching, and total antioxidant capacity. The results obtained showed that our plant oils had potent antibacterial activity towards Gram-negative (E. coli 57, E. coli 97, K. pneumonia, and P. aeruginosa) and Gram-positive (S. aureus), so that the maximum inhibition zones and MIC values were around 18-37 mm and 3.25 to 12.5 mg/mL, respectively. The oil also showed antifungal activity towards Candida albicans, Fusarium oxysporum, and Aspergillus Niger except for flavus species. CONCLUSION: The findings obtained in the work showed that A. negrei can serve as a valuable source of natural compounds that can be used as a new weapon to fight radical damage and resistant microbes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA